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ABSTRACT

Las imágenes de sección delgada representan una valiosa fuente de información para los estudios 
petrográficos aplicados. En este marco, se analiza un método de procesamiento computacional 
basado en redes neuronales artificiales para la obtención de información cualitativa y cuantitativa 
a partir de microfotografías de cortes de delgados en muestras areniscas. El método utilizado 
incluye dos arquitecturas principales de segmentación semántica, correspondientes a los modelos 
U-net y DeeplabV3+. El primero esta basado en redes neuronales totalmente convolucionales 
y una estructura de codificador-decodificador, mientras que el segundo incluye la convolución 
de Atrous, la agrupación de pirámide espacial y un módulo decodificador simple. Los modelos 
fueron entrenados con imágenes que incluyen por muestra un par de fotos con luz polarizada 
paralela y cruzada junto a una “máscara” que diferencia los píxeles correspondientes a cada 
clase. Las clases corresponden a los componentes principales de arenisca, incluyendo cuarzo, 
feldespatos, líticas y “de fondo” (incluyendo poro y cemento), y fueron diferenciadas a partir 
del proceso de segmentación semántica. El modelo entrenado resultante permitió el análisis de 
métricas evaluadas en muestras de prueba y comparar los resultados con la técnica estándar 
de conteo de puntos. El análisis indica que el método de procesamiento puede ser aplicado, 
brindando preliminarmente datos cualitativos y cuantitativos generales de la sección delgada en 
estudio. Además, el modelo puede mejorarse sustancialmente en función de su entrenamiento 
con datos nuevos y complementarios, y por lo tanto, refinar el método analítico.  

INTRODUCTION

Thin section sedimentary rock images represent a valuable source of information for applied 

petrographic studies in oil exploration and reservoir characterization. Computational methods 

generated in order to extract component data from photomicrographs were tested by previous 

authors (eg. Ładniak and Młynarczuk, 2015; Budennyy et al., 2017; Izadi et al., 2017, Rubo et 

al., 2017) arriving to the conclusion that automatic quantitative and qualitative analysis can be 

suitable for image processing. Therefore a complementary analysis tool that favors thin section 
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description and interpretation of sedimentary rock main components, including grain composition, 

might provide valuable assistance to geoscientists in the process of petrographic analysis. In this 

framework, the present contribution explores and test a computational processing method based 

on convolutional neural networks (CNN) in order to analyze the feasibility of its application in 

obtaining qualitative and quantitative petrographic data from thin section photographs. 

Consequently, a model was trained with a pair of images (Parallel Polarized Light PPL and 

Crossed Polarized Light XPL) and its mask indicating the component (e.g. mineral) corresponding 

to each pixel. Once trained, the model can be directly fed with a pair of images (PPL and XPL). 

The resulting image analysis is characterized by a 2D array of values, each one indicating the 

component recognized per pixel. This process of classifying an image in a pixel by pixel fashion 

is usually known as Semantic Segmentation. Finally, the model was mainly trained to work with 

sandstone images, and the components selected to be identified were Feldspar, Lithic Fragments 

and Quartz, in order to relate the results with the arenite ternary diagram of Folk´s (1970) 

classification.

MATERIALS 

Materials included sets of images of twenty-seven randomly selected thin sections of sandstones 

(arenites). The selection comprises arenites with different composition, diagenetic evolution and 

grain size for better model generalization. Each set of images consists of a pair (PPL and XPL) 

of 1600 by 1200 pixel photomicrographs together with its respective mask image obtained from 

a clast rich area in a given thin section (Figure 1) per sample. Regarding the generation of the 

masks, a one-hot-encoded format representing a 2D array of values per pixel was used. In this way 

each pixel of the image was assigned to a value ranging from 0 to 3, which in turn represent the 

class or component type. Then, the image is annotated by a geologist by mapping the different 

classes using an annotation tool specific for Semantic Segmentation (eg. Apeer software).  The 

component types consist of: Background (0) including background typified by matrix, cement 

and pore space; Feldspars (F); Lithic Fragments (L); and Quartz (Q). Therefore, the resulting 

output of an image analysis based on the convolutional neural network (CNN) herein generated 

correspond to a 2D array (1600 x 1200 in size) where each value represents the main selected 

classes of the pixel in the input image (see results section). The hardware used was a Desktop PC 

with a Rayzen 7 CPU, 32 Gb of RAM and a GPU with 12Gb memory. The program was made in 

Python programming language and the deep learning framework used was Tensorflow. Each pixel 

in the XPL image corresponded to the same pixel position in the PPL image, meaning there was 

no rotation between them, only a polarizer was added in between.
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CONSTRAIN IN MODEL GENERATION AN ANALYSIS

It is necessary to consider some limitations while acquiring data to feed and train the model, 

and the possible results. In this way it is important to mention that image annotation by a geologist 

is a very time and resources consuming task. A main limiting factor in our evaluation was the 

amount of annotated images available, which depending on the objectives and the resolution may 

reach hundreds in order to generate an good image segmentation model. In addition, identification 

of the component types (eg. minerals) from a photomicrograph is a very difficult task compared 

to, for example, segmenting cars or people from a street image Therefore, considering that the 

scope of this work is limited to assess the feasibility of a semantic segmentation model to classify 

the main minerals from a photomicrograph, it was difficult to expect good segmentation results. 

However once the models are trained with the available data and tested, it is possible to select the 

exemplar that can be improved with more training images. In this manner it is possible to generate 

a model that could consistently classify the selected component types and assist the petrographic 

analysis process.

Figure 1. Example of a pair of Plain Polarized Light image and a Crossed Polarized Light 
image, together with the annotated mask by the geologist, where yellow is Quartz, blue is 
Feldspars, green is Lithic Fragments and dark violet is background. 
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CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES APPLIED IN IMAGE 

ANALYSIS

Two semantic segmentation architectures were used, called Unet (Ronneberger et al., 2015) 

and the DeeplabV3+ (Chen et al., 2018) models, shown in Figure 2 and Figure 3 respectively. 

Unet architecture is based on fully convolutional neural networks and encoder-decoder structure, 

while Deeplab relies on Atrous convolution, Spatial Pyramid pooling, and a simple decoder 

module. Both architectures proved to have a good track record on public benchmark datasets 

and have been recently applied to petrographic images (eg. Rubo et al., 2019; Wang et al., 2021). 

Many of the innovations included in both of them are targeted at detecting small scale details 

without losing the large scale characteristics of the objects. These convolutional neural networks 

are fairly complex in the amount of layers used and hence they have a good number of trainable 

parameters, meaning they are memory and GPU intensive. For this reason, there is usually a limit 

in the image resolution for the input layer, because if the input image is too big, the computer 

resources could run out during training. In our case after some trial and error, we used a 400 x 400 

pixel input image that could be managed with the hardware resources available. This meant that 

the original image of 1600 x 1200 pixels had to be divided in 12 patches to be used for training 

and model prediction. During prediction, composing a mosaic of images predicted separately can 

also generate artifacts in the zones where they are joined together. Using a 400 x 400 input layer 

resulted in 1.9 million trainable parameters for Unet and 3.5 million for Deeplab V3+.

Figure 2. Unet architecture.
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MODEL EVALUATION AND COMPARISON

In order to evaluate the generated models, an internal model consistency test and a cross 

validation process were carried out. In the former all the images were used both in training and 

evaluation. While in the later different models were trained, and in each one of them, three 

sets of images were left out of the training and used for evaluation. In this way, it was possible 

to primarily check if at least a trained model with all the images could identify minerals with a 

good result in the same images used for training. If this was not the case, then a cross validation 

test would surely give poor results. In addition a primary check allowed for the comparison 

between the two architectures used, and for the identification of significant differences in the 

results.

•  Internal consistency test

The internal consistency test was intended to evaluate if it is possible to predict the classes of 

an image that was used in the training process. Thus, after some trial and error, we concluded that 

training for 100 epochs for the Unet architecture and 60 epochs for Deeplab gave the best results, 

avoiding overfitting at the same time. Training accuracy and loss is shown in Figure 4.

Figure 3. Deeplab V3+ architecture.
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Once both models (Unet and Deeplab) were trained, all the images were used for prediction, 

and the average results are shown in Table 1.

Figure 4. Training accuracy and loss for both architectures.

Table 1. Results of internal evaluation of each model.

The next stage in the model analysis consisted in linking the results to the Folk´s (1970) 

arenite ternary diagram (Figure 5) in order to test a preliminary classification. In this way   an 

image was fed into the trained model, and the main components (F, L, and Q) percentages were 

obtained as output. The percentage of each mineral was calculated in relation to the total minerals 

detected, not counting the background pixels. Then, the percentages of each minerals from both 

the original mask and from the model prediction are entered into a Folk ternary plot in order to 

check if both data points are at least in the same class (region) of the Folk´s diagram. If it is the 

situation, the classification is counted as a success. Finally, the classification accuracy is calculated 

as the total of correctly classified samples divided by the total images used multiplied by 100.
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The results show that Unet training converges slower than Deeplab, but has slightly better 

results in accuracy and Folk classification. The following figures show an example of the same 

image predicted by both Unet (Figure 6) and Deeplab (Figure 7). In both models this image 

resulted in an accuracy of around 80% which is near the average for both models.

Figure 5. Folk classification ternary diagram 
(Folk et al. 1970).

Figure 6. Prediction of Unet on one image (8b) used in the training process.
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Cross Validation Tests

After not perfect but acceptable results in the initial consistency test (see Figures 6 and 7), we 

needed a more realistic way of testing the model accuracy with images that it has not seen before 

during training. To do this, and based on the annotated images we had available (twenty-seven set 

of images), a cross validation test was carried out. This process mainly consisted of training nine 

models. In each one of them, twenty-four sets of images were used for training, and three images 

(photomicrographs) were fed for testing (prediction). We rotated the images so all the images were 

used for testing in the nine models.

Then a prediction and accuracy evaluation was made with the three testing images with its 

corresponding model. The Table 2 shows the images used for testing in each model, whereas the 

summary of testing results of the cross validation test is shown in Table 3. A comparison of the 

accuracy for each architecture and model pair is shown in Figure 8. In addition Figure 9 and Figure 

10 show examples of the same image with its prediction with each of the CNN architectures used.  

The test also shows that classification accuracy results are lower than in the internal validation, 

which is expected as the testing images were not part of the training set.

Figure 7. Prediction of Deeplab on one image (8b) used in the training process.



IAPG  •  Instituto Argentino del Petróleo y del Gas 183

Analysis of clastic sedimentary rocks using image semantic segmentation: 
exploring a computational processing method in petrographic studies

Table 2. Cross validation images used in each model.

Table 3. Cross validation summary

Figure 8. Testing accuracy for both architectures for each testing image.
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Figure 9. Unet prediction on image 8a with validation model 5 where the accuracy is near the 
average.

Figure 10 . Deeplab prediction on image 8a with validation model 5 where the accuracy is near 
the average.
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DISCUSSION

Our results show that Unet had better results in all the tests compared to Deeplab. However 

the latter should not be discarded as a possible architecture, since it has performed well in similar 

petrographic segmentation tasks (3).

Testing accuracy (61% pixel accuracy for Unet and 50.9% for Deeplab) is low for an acceptable 

segmentation task and do not allow for these models to be used in a production environment. The 

low performance observed was somewhat to be expected considering the relatively low amount 

of images used in this work. However, the results are not bad enough to rule out this method as 

a way to quantify main components in sandstones. In fact, the models in some cases successfully 

detected clasts not annotated by the geologists in the mask.

In this regard it is possible to enhance the accuracy of these models by significantly increasing 

the amount of annotated images used for training and testing. Adding more cross polarized light 

images at different polarizer angles, multiplying the amount of channels of the input layer of 

the CNN, and performing modifications to the CNN architectures that could increase model 

segmentation performance. In addition, results can be enhanced if the image under analysis 

correspond or is related to the same source data from which the models were trained. This 

means that the models can be fed with specific data corresponding to certain geological area or 

litostratigraphical unit, which in turn might optimize the recognition of particular features of the 

related samples.

Overall the study shows the potential that these image methods have in assisting the geologist 

performing petrographical analysis. The models can be adequately trained, and also prepare them 

to analyze other features such as pores and possible cement type. However it is important consider 

for future research, once the performance of CNN models is increased, that the results should be 

compared to humans performing the same tasks. To be accepted, those results should fall between 

or at least closely approach the uncertainty levels of humans.

CONCLUSIONS

This processing method can assist the geoscientist performing the petrographic analysis, 

bringing preliminary qualitative and quantitative data of the analyzed rock. Under the expert 

eye, this information can be also refined; contributing to optimize the time used describing, 

characterizing and classifying clastic sedimentary rocks. In addition, the model can be substantially 

improved based on its training with new and supplementary data, and therefore refining the 

analytic method.



IAPG  •  Instituto Argentino del Petróleo y del Gas

186 Evaluación de Formaciones

REFERENCES

Budennyy S., Pachezhertsev A., Bukharev A., Ero-

feev A, Mitrushkin D., 2017, Image Processing 

and Machine Learning Approaches for Petro-

graphic Thin Section Analysis. SPE Russian Pe-

troleum Technology Conference. https://doi. 

org/10.2118/187885-RU.

Chen LC., Zhu Y., Papandreou G., Schroff F., Hartwig 

A., 2018. Encoder-Decoder with Atrous Separa-

ble Convolution for Semantic Image Segmenta-

tion. https://arxiv.org/pdf/1802.02611.pdf

Folk R. L., Andrews P. B., Lewis D. B., 1970. Detrital 

sedimentary rock classification and nomencla-

ture for use in New Zealand, New Zealand Jour-

nal of Geology and Geophysics, 13:4, 937-968, 

DOI: 10.1080/00288306.1970.10418211

Iwaszenko S., Róg L., 2021. Application of Deep Learn-

ing in Petrographic Coal Images Segmentation. 

https://www.mdpi.com/2075-163X/11/11/1265/

pdf

Izadi H., Sadri J., Bayati M., 2017. An intelligent system for 

mineral identification in thin sections based on a cas-

cade approach. Computers and Geosciences 99, 37-49. 

Ładniak M, Młynarczuk M., 2015. Search of visually 

similar microscopic rock images. Comput. Geos-

ci, 19:127-136. doi: 10.1007/s10596-014-9459-2

Ronneberger O., Fischer P., Brox T., 2015. U-Net: 

Convolutional Networks for Biomedical Image 

Segmentation.  https://arxiv.org/abs/1505.04597

Rubo A. R., Carvalho Carneiro C., Fontana Michelon 

F., dos Santos Gioria R., 2019, Digital petrogra-

phy: Mineralogy and porosity identification us-

ing machine learning algorithms in petrographic 

thin section images, Journal of Petroleum Sci-

ence and Engineering 183, 1-14.

Wang Y., Bai X, Wu L, Zhang Y, Qu S., 2021. Identifi-

cation of maceral groups in Chinese bituminous 

coals based on semantic segmentation models. 

Fuel 308, 1-12.


